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Abstract. The combined eerenkov output of a particle with an electric charge and a 
magnetic dipole moment moving uniformly in a generalized uniaxial medium is investigated 
in the rest frame of the particle. It is shown that the cross terms in the output add up to zero, 
so that the radiated powers of the electric and magnetic poles are simply additive. The 
integrals for the radiated energy are explicitly evaluated for an electric dipole in a singly 
anisotropic medium. From the results of this integration, the eerenkov output of a 
magnetic dipole in a doubly anisotropic medium is obtained by making two sets of 
substitutions in succession. 

1. Introduction 

It is well known (Balazs 1956, Jelley 1958) that the dipole Cerenkov effect in isotropic 
media is too weak to be of practical value. The possibility of electromagnetic wave 
amplification in the presence of carrier drift (Bok and Nozieres 1963) has recently led to 
the preparation of new mixtures of ferromagnetic semi-metals (Veselago and 
Rudashevskii 1967). In view of their simultaneously large values of permittivity and 
permeability, these could form the basis of new types of Cerenkov magnetic moment 
detectors (Day 1961). However, the classical electrodynamics of such doubly aniso- 
tropic media has so far received relatively little attention (Lewandowski 1971, Sastry 
1974). 

In this paper, we evaluate the Cerenkov output of a particle with a charge and 
magnetic moment moving uniformly in a generalized uniaxial medium. The results are 
obtained by working in the rest frame of the particle and applying successively the 
reduction (Majumdar 1973) and duality (Papas 1965) theorems. 

2. Duality substitutions in a magneto-electric medium 

Viewed from the rest frame Z of the particle, the moving medium appears to acquire a 
magneto-electric character. In this section, we set up the duality scheme (table 1) in a 
general magneto-electric medium. 

With the formal introductionof the magnetic current density K' = (K, (T), Maxwell's 
equations ( l a ,  b )  become symmetric and transform into one another under the substitu- 

t Some of the work in this paper was submitted by S Bhattacharya as partial fulfillment of the MSc degree at 
the Indian Institute of Technology in July 1976. 
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Table 1. Duality scheme in a magneto-electric medium. 

Duality prescriptions H + F ,  J+-K; F + H * ,  K+J 
p k l +  Balk1 

e+S, A + Q ,  (+-v, (+-Z 

tions (4a, b) .  On making these substitutions in any set of equations derived from 
Maxwell's equations, we therefore obtain a 'dual set' which is equally valid and yields 
the solution of the 'dual' problem in which the electric and magnetic sources switch their 
places. However, if the medium were to remain the same, these substitutions call for 
the additional substitution (4c), which can be seen from equations (3a, b )  to be 
equivalent to equation ( 4 4 .  

3. The integrals for the radiated energy 

Let us consider a particle with charge e and magnetic dipole moment M moving 
uniformly with a velocity above the eerenkov threshold in a doubly anisotropic medium 
with parallel principal frames of E and ,U. We assume that the medium satisfies the 
generalized uniaxiality condition g2A2 = e3A3 (Majumdar and Pal 1970). Let the motion 
of the particle take place along the xl  axis lying in the principal x l x 2  plane of the 
medium, such that the optic axis makes an angle Q with the direction of motion. 

In the rest frame I: of the particle, the fields can be derived from two scalar potentials 
i$ and 9 as E = -Vi$, H = -V9. The energy W radiated per unit path length is equal to 
the retarding force with which the fields react on the particle (Landau and Lifshitz 
1960). Since the particle is at rest in X, the electric monopole experiences a force due 
only to the electric field while the magnetic dipole experiences a force due only to the 
magnetic field. However, since the moving medium is effectively magneto-electric, the 
electric monopole, though at rest, gives rise to a magnetic field and vice versa. W thus 
splits up into four parts: 

where W e  is the force on the electric monopole due to the electric field of the electric 
monopole, WM is the force on the electric monopole due to the electric field of the 
magnetic dipole, etc. 
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The electric scalar potential produced by a magnetic monopole of moment m is 
given by (Majumdar and Pal 1970) 

4em = -- mPYZ j(elAl -e2A2) sin i2 
87r3 

where 

and 

M(k)  = ~ ~ ( € 1 1 A 3 - P ~ ~ 1 € 2 ) k : + A 3 € z 2 k ~ + A 3 € 3 k : +  2yA3~12kikz. (7b)  

Now, by definition, 

W“ = e(al+em)x+O. (8) 

From the duality scheme of 0 2, the magnetic scalar potential of an electric monopole is 
obtained from (6) by the substitutions 

4em + ve, m +e, E ,  + 1/L, A, + l/e,. (9) 

Under these substitutions, it can easily be verified that 

L(k)+- MW), L(k). (10) M ( k ) + -  1 1 
e3A l A 2  A3ElE2  

The force on a magnetic monopole due to the magnetic field of an electric monopole is 
then given by 

(11) 
Thus the cross terms Wm and w““ in the combined output of an electric and a magnetic 
monopole add up to zero. It can be shown from a more detailed examination of the 
integrals that this is generally true and therefore the Cerenkov yields of electric and 
magnetic monopoles are merely additive. 

It only remains to evaluate We and WMM in equation (5 ) .  We  is the well known 
Cerenkov output of a charge in a uniaxial medium. In order to evaluate WMM, we first 
calculate the force W!Ll on an electric dipole in a magnetically isotropic medium, and 
apply the reduction and duality theorems in succession. It can easily be seen that 

w“‘ = m(alvme)”+O = - W”. 

where 4ee is given by the Fourier integral 
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By a Lorentz transformation of the wavevector it follows that kl  in Z is proportional 
to the frequency o in 2’. Hence, the integrals over kl  cannot be performed without a 
detailed knowledge of the dispersive properties of the medium. The remaining 
integrations can be carried out by applying the residue theorem in the complex k3 plane 
and converting the k2 integral into that over a unit circle. The dipole output (12) is the 
sum of six terms W1, W2, . . . containing P:, P i ,  P:, P i p 2 ,  P2P3, and Pip3 respectively. 
Each of the derivatives in (12) brings in corresponding powers of k l ,  k2 and k3 into the 
numerator of (13), while leaving the denominator untouched. Each of these integrals 
consists of a principal part and a contribution from the poles. Both of these vanish if odd 
powers of k3 occur in the numerator. Due to the presence of k l k 2  in the denominator of 
(13), the principal part vanishes if the numerator contains either odd powers of k l  or 
odd powers of k2 after division by the highest power of k l k 2 .  On the other hand, the 
contribution from the poles vanishes for even powers of k l .  This is because the 
imaginary parts of E and w are positive for positive w ( k J  and negative for negative 
w ( k l )  (Landau and Lifshitz 1960). This makes the contour traverse around the poles in 
opposite senses for opposite signs of k l .  

From these considerations it can easily be verified that the cross terms in (12) 
containing PIP2,  P2P3 and Pip3 are identically zero. This means once again that the 
eerenkov yields of dipoles oriented along the xi ,  x2 ,  x 3  axes do not interfere with one 
another and are merely additive. Further, it can be checked that the principal parts of 
these remaining integrals Wl, W2, W3 also vanish, leaving only the contributions from 
the ordinary and extraordinary poles, which are the zeros of L ( k )  and M ( k )  respec- 
tively. 

4. Application of the reduction and duality theorems 

The results of integration of the preceding section can at once be extended so as to apply 
to a doubly anisotropic medium by effecting the following substitutions in the order 
indicated (Majumdar 1973, Sastry 1974): 

with an overall multiplication factor of (Al1/1A 
output of a magnetic dipole can be obtained by the duality prescription, 

From the resulting expressions, the 

P, + Mu, cu + UA,, A, + l/c,. (15) 
The final expressions then take the form 

where 
w =  w=+ WMM= w=+ w1+ w2+ w,, 
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The geometry of the problem singles out a unique plane in space, namely that 
containing the optic axis and the direction of motion. Thus, the two orientations of the 
dipole at right angles to the direction of motion are not equivalent. This explains why 
W2 and W3 are not in general equal. However, in the special case = 0 when the two 
directions coincide, there is no longer a unique plane, and the difference between the 
two transverse directions disappears. This is borne out by the fact that in this case both 
W2 and W3 reduce to the same expression: 

In an isotropic medium, this should always be true, as can easily be verified from 
equations (19) and (20). 
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